The large-scale organization of metabolic networks
H. Jeong’, B. Tombor’, R. Albert', Z. N. Oltvai* and A.-L. Barabasi
'Department of Physics, University of Notre Dame, Notre Dame, IN 46556, and

’Department of Pathology, Northwestern University Medical School, Chicago, IL 60611

In a cell or microorganism the processes that generate mass, energy, information transfer, and
cell fate specification are seamlessly integrated through a complex network of various cellular
constituents and reactions 1. However, despite the key role these networks play in sustaining
various cellular functions, their large-scale structure is essentially unknown. Here we present
the first systematic comparative mathematical analysis of the metabolic networks of 43
organisms representing all three domains of life. We show that, despite significant variances in
their individual constituents and pathways, these metabolic networks display the same
topologic scaling properties demonstrating striking similarities to the inherent organization of
complex non-biological systems 2. This suggests that the metabolic organization is not only
identical for all living organisms, but complies with the design principles of robust and error-
tolerant networks 22, and may represent a common blueprint for the large-scale organization of
interactions among all cellular constituents.

An important goal in biology is to uncover the fundamental design principles that provide the
common underlying structure and function in all cells and microorganisms 6-13. For example, it is
increasingly appreciated that the robustness of various cellular processes seen in a cell or
microorganism is rooted in the dynamic interactions among its many constituents 14 15 such as
proteins, DNA, RNA, and small molecules. Yet, the large-scale design principles that integrate these
interactions into a complex system are poorly understood 1. Recent scientific developments, however,
significantly improve our ability to identify such principles. Large-scale genome sequencing projects

have provided complete sequence information for more than two dozen prokaryotes and a few
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eukaryotes, allowing the identification of known pathways in the annotated genome of an organism 16,
This, combined with firmly established data from the biochemical literature, led to the development of
integrated pathway-genome databases 17-19 that provide organism-specific connectivity maps of
metabolic- and, to a lesser extent, various other cellular networks. Yet, due to the large number and the
diversity of the constituents and reactions forming such networks, these maps are extremely complex,
offering only limited insight into the design principles governing the organization of these systems. Our
ability to address in quantitative terms the structure of these cellular networks, however, has benefited
from recent advances in understanding the generic properties of complex networks 2.

Until recently, complex networks have been modeled using the classical random network theory
introduced by Erdds and Rényi (ER) 20 21, The ER model assumes that each pair of nodes (i.e.,
constituents) in the network is connected randomly with probability p, leading to a statistically
homogeneous network, in which, despite the fundamental randomness of the model, most nodes have
the same number of links, [kOJ(Fig. 1a). In particular, the connectivity follows a Poisson distribution

strongly peaked at [k(J(Fig. 1b), implying that the probability to find a highly connected node decays
exponentially (i.e. P(k) ~ e* for k » [k[). On the other hand, recent empirical studies on the structure of

the World-Wide Web 22, Internet 23, and social networks 2 have reported serious deviations from this
random structure, demonstrating that these systems are described by scale-free networks 2 (Fig. 1c),
for which P(k) follows a power-law, i.e. P(k) ~ k”(Fig. 1d). Unlike exponential networks, scale-free
networks are extremely heterogeneous, their topology being dominated by a few highly connected
nodes (hubs) which link the rest of the less connected nodes to the system (Fig. 1c). Since the
distinction between the scale-free and exponential networks emerges as a result of simple dynamical
principles 24 25 understanding the large-scale structure of cellular networks can provide not only
valuable and perhaps universal structural information, but could also lead to a better understanding of
the dynamical processes that generated these networks. In this respect the emergence of power law

distribution is intimately linked to the growth of the network in which new nodes are preferentially
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attached to already established nodes 2, a property that is also thought to characterize the evolution of
biological systems 1.

To address the large-scale structural organization of cellular networks, we have examined the
topologic properties of the core metabolic network of 43 different organisms based on data deposited in
the WIT database 18. This integrated pathway-genome database predicts the existence of a given
metabolic pathway primarily based on the annotated genome of an organism, i.e. on the presence of
the open reading frame (ORF) of an enzyme that catalyzes a given metabolic reaction. As 18 of the 43
organisms deposited in the database are not yet fully sequenced, and a substantial portion of the
identified ORFs are functionally unassigned, the list of enzymes, and consequently the list of substrates
and reactions (Table 1), will certainly be expanded in the future. Nevertheless, this publicly available
database represents our current best approximation for the metabolic pathways in 43 organisms and
provides sufficient data for their unambiguous statistical analysis (see Methods and Supplementary
Material 26).

As we illustrate in Fig. le, we have first established a graph theoretic representation of the
biochemical reactions taking place in a given metabolic network. In this representation, a metabolic
network is built up of nodes, which are the substrates that are connected to one another through links,
which are the actual metabolic reactions. The physical entity of the link is the temporary educt-educt
complex itself, in which enzymes provide the catalytic scaffolds for the reactions yielding products,
which in turn can become educts for subsequent reactions. Of note, a few reactions are spontaneous
and require no enzymatic activity (Fig. le, lower left corner). This representation allows us to
systematically investigate and quantify the topologic properties of various metabolic networks using the
tools of graph theory and statistical mechanics 21. Our first goal was to identify the structure of the
metabolic networks, i.e., to establish if their topology is best described by the inherently random and
uniform exponential model 21 (Fig. 1a and b), or the highly heterogeneous scale-free model 2 (Fig. 1c

and d). As illustrated in Fig. 2, our results convincingly indicate that the probability that a given

www.manaraa.com



substrate participates in k reactions follows a power-law distribution, i.e., metabolic networks belong to
the class of scale-free networks. Since under physiological conditions a large number of biochemical
reactions (links) in a metabolic network are preferentially catalyzed in one direction (i.e. the links are
directed), for each node we distinguish between incoming and outgoing links (Fig. 1e). For instance, in
E. coli the probability that a substrate participates as an educt in k metabolic reactions follows P(k) ~
k¥ with Y, = 2.2, and the probability that a given substrate is produced by k different metabolic
reactions follows a similar distribution, with y = 2.2 (Fig. 2b). We find that scale-free networks describe
the metabolic networks in all organisms in all three domains of life (Fig. 2a-c) 28, indicating the generic
nature of this structural organization (Fig. 2d).

A general feature of many complex networks is their small-world character 27, i.e. any two nodes in
the system can be connected by relatively short paths along existing links. In metabolic networks these
paths correspond to the biochemical pathway connecting two substrates (Fig. 3a). The degree of
interconnectivity of a metabolic network can be characterized by the network diameter, defined as the
shortest biochemical pathway averaged over all pairs of substrates. For all hon-biological networks
examined to date the average connectivity of a node is fixed, which implies that the diameter of a
network increases logarithmically with the addition of new nodes 2 27, 28, For metabolic networks this
implies that a more complex bacterium with higher number of enzymes and substrates, such as E. coli,
would have a larger diameter than a simpler bacterium, such as M. genitalium. In contrast, we find that
the diameter of the metabolic network is the same for all 43 organisms, irrespective of the number of
substrates found in the given species (Fig. 3b). This is surprising and unprecedented, and is possible
only if with increasing organism complexity individual substrates are increasingly connected in order to
maintain a relatively constant metabolic network diameter (Fig. 3a inset). Indeed, we find that the
average number of reactions in which a certain substrate participates increases with the number of

substrates found within the given organism (Fig. 3c and d).
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An important consequence of the power-law connectivity distribution is that a few hubs dominate
the overall connectivity of the network (Fig. 1c), and upon the sequential removal of the most-
connected nodes the diameter of the network rises sharply, the network eventually disintegrating into
isolated clusters that are no longer functional. Yet, scale-free networks also demonstrate unexpected
robustness against random errors °. To examine if metabolic networks display a similar error tolerance
we performed computer simulations on the metabolic network of the bacterium, E. coli. Upon removal
of the most connected substrates the diameter increases rapidly, illustrating the special role these
metabolites play in maintaining a constant metabolic network diameter (Fig. 3e). However, when
randomly chosen M substrates were removed, -mimicking the consequence of random mutations of
catalyzing enzymes-, the average distance between the remaining nodes was not affected, indicating a
striking insensitivity to random errors. Indeed, in-silico and in-vivo mutagenesis studies indicate a
remarkable fault tolerance upon removal of a substantial number of metabolic enzymes from the E. coli
metabolic network 29. Of note, data similar to that shown in Fig. 3e have been obtained for all
investigated organisms, without detectable correlations with their evolutionary position.

Since the large-scale architecture of the metabolic network rests on the most highly connected
substrates, we need to address whether the same substrates act as hubs in all organisms, or if there
are major organism-specific differences in the identity of the most connected substrates. When we rank
order all the substrates in a given organism based on the number of links they have (Table 1), we find
that the ranking of the most connected substrates is practically identical for all 43 organisms. Also, only
~4% of all substrates that are found in all 43 organisms are present in all species. These substrates
represent the most highly connected substrates found in any individual organism, indicating the generic
utilization of the same substrates by each species. In contrast, species-specific differences among
various organisms emerge for less connected substrates. To quantify this observation, we examined

the standard deviation (o)) of the rank for substrates that are present in all 43 organisms. As shown in

Fig. 3f, we find that g increases with the average rank order, [iL] implying that the most connected
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substrates have a relatively fixed position in the rank order, but the ranking of less connected
substrates is increasingly species-specific. Thus, the large-scale structure of the metabolic network is
identical for all 43 species, being dominated by the same highly connected substrates, while less
connected substrates preferentially serve as educt or product of species-specific enzymatic activities.

The contemporary topology of a metabolic network reflects a long evolutionary process molded in
general for a robust response towards internal defects and environmental fluctuations and in particular
to the ecological niche the specific organism occupies. As a result, one expects that these networks are
far from being random, and our data demonstrate that the large-scale structural organization of
metabolic networks is indeed highly similar to that of robust and error-tolerant networks 2 5. The
uniform network topology observed in all 43 organisms strongly suggests that, irrespective of their
individual building blocks or species-specific reaction pathways, the large-scale structure of metabolic
networks is identical in all living organisms.

A unique feature of metabolic networks, as opposed to that seen in non-biological scale-free
networks, is the apparent conservation of the network diameter in all living organisms. Within the
special characteristics of living systems this attribute may represent an additional survival and growth
advantage, since a larger diameter would attenuate the organism’s ability to efficiently respond to
external changes or internal errors. For example, should the concentration of a substrate suddenly
diminish due to mutation in its main catalyzing enzyme, offsetting the changes would involve the
activation of longer alternative biochemical pathways, and consequently the synthesis of more new
enzymes, than within a smaller metabolic network diameter.

But how generic these principles are for other cellular networks (e.g., information transfer, cell
cycle)? While the current mathematical tools do not allow unambiguous statistical analysis of the
topology of other networks due to their relatively small size, our preliminary analysis suggest that
connectivity distribution of nhon-metabolic pathways also follows a power-law distribution, indicating that

cellular networks as a whole are scale-free networks. Therefore, the evolutionary selection of a robust
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and error tolerant architecture may characterize all cellular networks, for which the scale-free topology

with a conserved network diameter appears to provide an optimal structural organization.

Methods
Database preparation: For our analyses of core cellular metabolisms we used the “Intermediate metabolism and

Bioenergetics” portions of the WIT database 18 (http://igweb.integratedgenomics.com/IGwit/), that predicts the
existence of a metabolic pathway in an organism primarily based on the annotated genome of the organism, i.e.,
on the presence of the open reading frame (ORF) of an enzyme that catalyzes a given metabolic reaction. As of
December 1999, this database provides description for 6 archaea, 32 bacteria and 5 eukaryota. The downloaded

data were manually rechecked, removing synonyms and substrates without defined chemical identity.

Construction of metabolic network matrices: Biochemical reactions described within a WIT database are
composed of substrates and enzymes connected by directed links. For each reaction, educts and products were
considered as nodes connected to the temporary educt-educt complexes and associated enzymes. Bi-directional
reactions were considered separately. For a given organism with N substrates, E enzymes and R intermediate
complexes the full stochiometric interactions were compiled into an (N+E+R) x (N+E+R) matrix, generated

separately for each of the 43 organisms.

Connectivity distribution [P(k)]: Substrates generated by a biochemical reaction are products, and are

characterized by incoming links pointing to them. For each substrate we have determined k_, and prepared a

histogram for each organism, providing how many substrates have exactly k,, =0,1,.... Dividing each point of the
histogram with the total number of substrates in the organism provided P(k,), or the probability that a substrate
has k;,, incoming links. Substrates that participate as educts in a reaction have outgoing links. We have performed

the analysis described above for k,, determining the number of outgoing links (k,,) for each substrate. To reduce

in?

noise logarithmic binning was applied.

Biochemical pathway lengths [[(1)]: For all pairs of substrates, the shortest biochemical pathway, M(l) (i.e., the

smallest number of reactions by which one can reach substrate B from substrate A) were determined using a

burning algorithm. From (1) we determined the diameter, D =ZII [I]'I(I)/ZII"I(I), which represents the

average path length between any two substrates.
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Substrate ranking [ <r>,, o(r) ]: Substrates present in all 43 organisms (i.e., a total of 51 substrates) were ranked
based on the number of links each had in each organisms, having considered incoming and outgoing links
separately (r =1 were assigned for the substrate with the largest number of connections, and r =2 for second most
connected one, etc.). This way for each substrate a well-defined r value in each organism was defined. The
average rank <r>, for each substrate was determined by averaging r over the 43 organisms. We also determined

the standard deviation, o(r) = <r’>, - <r> for all 51 substrates present in all organisms.

Analysis of the effect of database errors: Of the 43 organisms whose metabolic network we have analyzed the
genome of 25 has been completely sequenced (5 Archae, 18 Bacteria, 2 Eukaryotes), while the remaining 18 are
only partially sequenced. Therefore two major sources of possible errors in the database could affect our analysis:
(&) the erroneous annotation of enzymes and consequently, biochemical reactions; for the organisms with
completely sequenced genomes this is the likely source of error. (b) reactions and pathways missing from the
database; for organisms with incompletely sequenced genomes both (a) and (b) are of potential source of error.

We investigated the effect of database errors on the validity of our findings, the results being presented in the

Supplementary Material 26, indicating that the results offered in this paper are robust to these errors.
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Figure 1

(&) The classical random network model of Erddés and Rényi assumes that each pair of nodes are connected
randomly, with probability p. Since links are assigned randomly, nodes can have different number of links
(connectivity). (b) The network connectivity can be characterized by the histogram of the number of nodes with k
links, which, after normalization, gives the probability, P(k), that a node has k links. For a random network P(k) is
strongly peaked at k = (kCand decays exponentially for large k (i.e. P(k) ~ e* for k » (kCand k « kL), implying that
the majority of nodes have the same connectivity k = K[ (¢c) A scale-free network has a drastically different
topology: most nodes have only a few links, but a few nodes, called hubs (red), have a very large number of links,
effectively connecting the rest of the nodes together into a fully connected network. (d) The connectivity
distribution, P(k), for a scale-free network has no well-defined peak, indicating the absence of a characteristic
scale. For large k, P(k) decays as a power-law, P(k) ~ k¥, thus P(k) appears as a straight line with slope -yon a
log-log plot. () The substrates and the reactions in a metabolic network can be uniquely described using a graph
theoretic representation. Each substrate represents a node of the graph, denoted by A, B, C, .... These nodes are
linked to one another through temporary educt-educt complexes (black boxes, M,, M,, ...), from which the
products emerge as new nodes (substrates). The enzymes that provide the catalytic scaffolds for the reactions
are also shown (denoted by E,, E,, ...). Since under in vivo conditions some reactions are reversible, while others
are irreversible, in the graph we have both directed (simple arrow) or undirected (double arrow) links. The
complexity of the metabolic network comes from the fact that some substrates can participate in multiple
reactions, and can act both as educt or product of different reactions.
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Figure 2

Connectivity distribution P(k) for the substrates in (a) A. fulgidus (Archae) (b) E. coli (Bacterium) (c) C. elegans
(Eukaryote), shown on a log-log plot, counting separately the incoming (IN) and outgoing links (OUT) for each
substrate, k,, (k) corresponding to the number of reactions in which a substrate participates as an product
(educt) (see Fig. 1e). Practically indistinguishable plots have been obtained for all 43 organisms investigated. The
characteristics of the three organisms shown in a-c and the exponents vy, and y,, for all organisms are given in
Table 1. (d) The connectivity distribution averaged over all 43 organisms. The exponent ywas determined from
the slope of the plots, calculated using a least square fit method.
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(&) The histogram of the biochemical pathway lengths, ¢, in the bacterium, E. coli. For example in Fig. 1e the
biochemical pathway distance between the substrates B and D is ¢=1, since these can be linked through a single
reaction (B 0% - D), but between B and F we have ¢=2, counted, for example, along the BO® - DOB - F
pathway. The figure shows the histogram of the shortest biochemical pathway lengths for all pairs of substrates in
E. coli. The average path length gives the diameter of the network. The strong peak of IM(¢) indicates that in E. coli
most substrates are connected by a path of length /=3, i.e. the average diameter of the network is close to three
(the precise value is D=3.2). Inset: Schematic illustration of the changes in the network diameter during growth. In
a simple network containing three nodes (A, B and C) each having 2 links (solid lines), the distance between any
two nodes is equal to 1, thus the diameter of the network is 1. When a new node (D) with two links (BD and CD,
dashed lines) is added to the system, the diameter increases to D=({,,+{, +ls. +4p oo +£,5)/6 = 7/6 sSince £,,=2
and all other distances are ¢=1. Adding an extra link (AD, dotted line) will decrease the diameter, bringing it back
to one, while the average connectivity increases from 2 to 3, demonstrating that an unchanged diameter can be
maintained through increasing the average connectivity. (b) The diameter for all 43 investigated organisms,
indicating that the diameter is constant within the error bars. The error bars in (b) correspond to the standard
deviation o ~ [#°0- 2[4 as determined from M(¢) (shown in (a) for E. coli). The horizontal axis denotes the number
of nodes in each organism. Archaea are shown in magenta, bacteria in green, and eukaryotes in blue, a color
code used in Table 1 as well. (c) The average number of incoming links per node for each bacterium studied in
the database, calculated by dividing the total number of incoming links (L,) with the number of substrates (N) in a
given organism. (d) The same as in (c) but for outgoing links. (e) The effect of substrate removal on the diameter
of the E. coli bacteria. In the upper curve (A) we select and remove the nodes in an inverse order of connectivity,
starting with the most connected substrate first (largest hub), and continuing in decreasing order of the number of
links, indicating that the diameter is sensitive to the presence/absence of the most connected nodes. In the
bottom curve () nodes are selected and removed randomly. The unchanged diameter indicates the high degree
of error tolerance of the metabolic network. Note that M=60 corresponds to 8% of the total number of substrates
in E. coli. (f) Standard deviation of the substrate ranking (o) as a function of the average ranking, B[] for
substrates present in all 43 investigated organisms. For each organism we ranked all substrates based on the
number of links they had, assigning r=1 for the most connected substrate, r=2 for next less connected one, and so
on. We then determined @[] for a given substrate, where 0[] denotes averaging the ranking of a given substrate
over all 43 organisms, and the standard deviation, g,= [i°[] - (. A substrate with o, = 0 and average rank [I[] has
rank r = (] in each of the 43 organisms, while an increasing o, signals increased variability in the ranking of the
substrate. Note that only 51 substrates are present in all organisms, a mere 4% of the total, indicating high degree
of differentiation between different species.
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Table 1.

No. | Name N | L(IN) | L(OUT) | R E Yo | You | D Hub(IN) Hub(OUT)
204 | 588 575 178 | 135 | 2.2 | 2.2 | 3.2 | bacdeldfij adbcegipfh
496 | 1527 | 1484 486 | 299 | 2.2 | 2.2 | 3.5 | abcdghefijk | adbijchemf
430 | 1374 | 1331 428 | 280 | 2.2 | 2.2 | 3.4 | abcdgefkhi adbicejfkh
424 | 1317 | 1272 415 | 264 | 2.2 | 2.3 | 3.5 | abcdgekfnh | adbciejkhf
316 | 901 867 283 | 191 | 2.0 | 2.3 | 3.4 | abcdgeknfh | dabceipjhf
323 | 914 882 288 | 196 | 2.0 | 2.2 | 3.4 | abdcgefknl | dabciepjhq
419 | 1278 | 1249 401 | 285 | 2.1 | 2.2 | 3.3 | bcadgefhki adbciejgfh
194 | 401 391 134 84 |22 | 2.3 | 3.4 | bdcagfleri dabciergfp
215 | 479 462 158 94 | 22| 24 | 3.5 | bdacgfelrm | dbaciegrfp
546 | 1782 | 1746 570 | 370 | 2.0 | 2.2 | 3.3 | abcdegfhjk | adbicjehfg
424 | 1192 | 1156 374 | 254 | 2.2 | 2.2 | 3.3 | abdcgefnkh | adbceipjhg
429 | 1247 | 1221 391 | 282 | 22| 2.2 | 3.2 | abdcgelfkm | adbceifhjq
422 | 1271 | 1244 402 | 282 |22 | 2.2 | 3.2 | abcdgefkml | adbceifjhq
587 | 1862 | 1823 589 | 358 | 2.0 | 2.2 | 3.3 | adbcghemjk | adbjhmceit
785 | 2794 | 2741 916 | 516 | 2.2 | 2.1 | 3.3 | abdcjhmegf | adhbjcimef
386 | 1244 | 1218 382 | 281 | 21| 2.2 | 3.1 | bdacgelfik adbciefghj
494 | 1624 | 1578 511 | 344 | 2.1 | 2.2 | 3.3 | abcdgefhlk | adbceijhfo
209 | 535 525 196 85 |24 | 2.2 | 3.5 | bdcgzxuyos | adbcguvwos
178 | 470 466 154 88 | 23| 2.2 | 3.2 | bcdgxoyasl | dabcgowvsr
416 | 1331 | 1298 412 | 288 | 2.1 | 2.2 | 3.2 | abdcgelfno | adbceifghj
403 | 1300 | 1277 404 | 280 | 2.1 | 2.2 | 3.1 | abdcegfoln | adbceifohg
389 | 1097 | 1062 333 | 231 | 21| 2.2 | 3.3 | badcgenfki | dabceipgfq
670 | 2174 | 2122 711 | 427 | 2.1 | 2.2 | 3.4 | abcdhgefik | adbjhicmet
214 | 510 504 155 | 100 | 2.3 | 2.3 | 3.4 | bdacfegilm dabicfemgt
406 | 1298 | 1270 413 | 285 | 2.1 | 2.2 | 3.2 | abdcgefkjh adbiechfig
381 | 1212 | 1181 380 | 271 | 22| 2.2 | 3.2 | abdcegfkli adbecifhjg
380 | 1142 | 1115 359 | 254 | 2.1 | 2.3 | 3.2 | abdcegfkih adbeicfgjh
375 | 1181 | 1144 375 | 246 | 2.0 | 2.3 | 3.3 | abcdgefnhk | dabciejfhp
778 | 2904 | 2859 968 | 570 | 2.2 | 2.1 | 3.2 | abcdhjemlf | adhjbciefm
819 | 3008 | 2951 | 1007 | 577 | 2.2 | 2.2 | 3.2 | abcdhjegfm | adhjbciefm
568 | 1754 | 1715 580 | 386 | 2.1 | 2.2 | 3.3 | abdcgeklth adbceihifl
395 | 1202 | 1166 380 | 271 |21 | 2.2 | 3.2 | bacdgefikl adbciefhgj
526 | 1773 | 1746 597 | 361 | 2.1 | 2.3 | 3.2 | abcdegfjhm | adbchiefju
734 | 2453 | 2398 799 | 490 | 2.1 | 2.2 | 3.3 | abdchjkgef | adjhbimcef
207 | 562 555 175 | 124 | 2.2 | 2.3 | 3.1 | bdcgaelnfh | dabcegiplf
187 | 442 438 140 | 106 | 2.3 | 2.4 | 3.0 | bdgcaleifn dabcgifeal
338 | 1004 976 302 | 223 | 2.1 | 2.2 | 3.2 | badcedfikn dabceifggh
815 | 2870 | 2811 965 | 557 | 2.2 | 2.1 | 3.3 | achdhjgekm | adhbjcimef
383 | 1095 | 1081 339 | 254 | 2.1 | 2.2 | 3.3 | abdcegjhfl adbcjheifq
561 | 1934 | 1889 596 | 402 | 2.0 | 2.2 | 3.3 | abdcehjgkm | adbhcjeifm
462 | 1446 | 1418 450 | 295 | 2.1 | 2.2 | 3.3 | abdcjhelgk adbhcjiefm
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42 292 | 763

751

238

178

2.1

2.3

3.5

badcegljkn adbcehjifn

43 302 | 804

789

250

185

2.1

2.3

3.5

badcegjhlk adbcehjign

Summary of the characteristics of the 43 investigated organisms. For each organism we show the number of
substrate (N), number of links (L), number of individual reactions or temporary substrate-enzyme complexes (R),

number of enzymes (E), the exponent Y, and V,, and the diameter of the metabolic network (D). In the last two
columns we list the ten substrates with the largest number of incoming (IN) and outgoing (OUT) links. The letters
correspond to: a=H,0, b=ADP, c=orthophosphate, d=ATP, e=L-glutamate, f=NADP", g=pyrophosphate, h=NAD",
i=NADPH, j=NADH, k=CO,, I=NH,", m=CoA, n=AMP, o=pyruvate, p=L-glutamine, g=2-oxoglutarate, r="alpha'-D-
glucose 1-phosphate, s=phospho‘enol pyruvate, t=acetyl-CoA, u=H", v=uridine, w=cytidine, x=UMP, y=CMP,
z=glycerol, a=D-fructose 6-phosphate. The color code of the fields denotes the different domains of life such a

magenta = Archae green = Bacterium sky blue =Eukaryote.
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