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In a cell or microorganism the processes that generate mass, energy, information transfer, and

cell fate specification are seamlessly integrated through a complex network of various cellular

constituents and reactions 1. However, despite the key role these networks play in sustaining

various cellular functions, their large-scale structure is essentially unknown. Here we present

the first systematic comparative mathematical analysis of the metabolic networks of 43

organisms representing all three domains of life. We show that, despite significant variances in

their individual constituents and pathways, these metabolic networks display the same

topologic scaling properties demonstrating striking similarities to the inherent organization of

complex non-biological systems 2. This suggests that the metabolic organization is not only

identical for all living organisms, but complies with the design principles of robust and error-

tolerant networks 2-5, and may represent a common blueprint for the large-scale organization of

interactions among all cellular constituents.

An important goal in biology is to uncover the fundamental design principles that provide the

common underlying structure and function in all cells and microorganisms 6-13. For example, it is

increasingly appreciated that the robustness of various cellular processes seen in a cell or

microorganism is rooted in the dynamic interactions among its many constituents 14, 15, such as

proteins, DNA, RNA, and small molecules. Yet, the large-scale design principles that integrate these

interactions into a complex system are poorly understood 1. Recent scientific developments, however,

significantly improve our ability to identify such principles. Large-scale genome sequencing projects

have provided complete sequence information for more than two dozen prokaryotes and a few
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eukaryotes, allowing the identification of known pathways in the annotated genome of an organism 16.

This, combined with firmly established data from the biochemical literature, led to the development of

integrated pathway-genome databases 17-19  that provide organism-specific connectivity maps of

metabolic- and, to a lesser extent, various other cellular networks. Yet, due to the large number and the

diversity of the constituents and reactions forming such networks, these maps are extremely complex,

offering only limited insight into the design principles governing the organization of these systems. Our

ability to address in quantitative terms the structure of these cellular networks, however, has benefited

from recent advances in understanding the generic properties of complex networks 2.

Until recently, complex networks have been modeled using the classical random network theory

introduced by Erdös and Rényi (ER) 20, 21. The ER model assumes that each pair of nodes (i.e.,

constituents) in the network is connected randomly with probability p, leading to a statistically

homogeneous network, in which, despite the fundamental randomness of the model, most nodes have

the same number of links, 〈k〉 (Fig. 1a). In particular, the connectivity follows a Poisson distribution

strongly peaked at 〈k〉 (Fig. 1b), implying that the probability to find a highly connected node decays

exponentially (i.e. P(k) ~ e-k  for k » 〈k〉). On the other hand, recent empirical studies on the structure of

the World-Wide Web 22, Internet 23, and social networks 2 have reported serious deviations from this

random structure, demonstrating that these systems are described by scale-free networks 2 (Fig. 1c),

for which P(k) follows a power-law, i.e. P(k) ~ k-γ (Fig. 1d).  Unlike exponential networks, scale-free

networks are extremely heterogeneous, their topology being dominated by a few highly connected

nodes (hubs) which link the rest of the less connected nodes to the system (Fig. 1c). Since the

distinction between the scale-free and exponential networks emerges as a result of simple dynamical

principles 24, 25, understanding the large-scale structure of cellular networks can provide not only

valuable and perhaps universal structural information, but could also lead to a better understanding of

the dynamical processes that generated these networks. In this respect the emergence of power law

distribution is intimately linked to the growth of the network in which new nodes are preferentially
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attached to already established nodes 2, a property that is also thought to characterize the evolution of

biological systems 1.

To address the large-scale structural organization of cellular networks, we have examined the

topologic properties of the core metabolic network of 43 different organisms based on data deposited in

the WIT database 18. This integrated pathway-genome database predicts the existence of a given

metabolic pathway primarily based on the annotated genome of an organism, i.e. on the presence of

the open reading frame (ORF) of an enzyme that catalyzes a given metabolic reaction. As 18 of the 43

organisms deposited in the database are not yet fully sequenced, and a substantial portion of the

identified ORFs are functionally unassigned, the list of enzymes, and consequently the list of substrates

and reactions (Table 1), will certainly be expanded in the future. Nevertheless, this publicly available

database represents our current best approximation for the metabolic pathways in 43 organisms and

provides sufficient data for their unambiguous statistical analysis (see Methods and Supplementary

Material 26).

As we illustrate in Fig. 1e, we have first established a graph theoretic representation of the

biochemical reactions taking place in a given metabolic network. In this representation, a metabolic

network is built up of nodes, which are the substrates that are connected to one another through links,

which are the actual metabolic reactions. The physical entity of the link is the temporary educt-educt

complex itself, in which enzymes provide the catalytic scaffolds for the reactions yielding products,

which in turn can become educts for subsequent reactions. Of note, a few reactions are spontaneous

and require no enzymatic activity (Fig. 1e, lower left corner). This representation allows us to

systematically investigate and quantify the topologic properties of various metabolic networks using the

tools of graph theory and statistical mechanics 21.  Our first goal was to identify the structure of the

metabolic networks, i.e., to establish if their topology is best described by the inherently random and

uniform exponential model 21 (Fig. 1a and b), or the highly heterogeneous scale-free model 2 (Fig. 1c

and d). As illustrated in Fig. 2, our results convincingly indicate that the probability that a given
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substrate participates in k reactions follows a power-law distribution, i.e., metabolic networks belong to

the class of scale-free networks. Since under physiological conditions a large number of biochemical

reactions (links) in a metabolic network are preferentially catalyzed in one direction (i.e. the links are

directed), for each node we distinguish between incoming and outgoing links (Fig. 1e). For instance, in

E. coli  the probability that a substrate participates as an educt in k metabolic reactions follows P(k) ~

k-γin, with γ
in
 = 2.2, and the probability that a given substrate is produced by k different metabolic

reactions follows a similar distribution, with γ
out

 = 2.2 (Fig. 2b). We find that scale-free networks describe

the metabolic networks in all organisms in all three domains of life (Fig. 2a-c) 26, indicating the generic

nature of this structural organization (Fig. 2d).

A general feature of many complex networks is their small-world character 27, i.e. any two nodes in

the system can be connected by relatively short paths along existing links. In metabolic networks these

paths correspond to the biochemical pathway connecting two substrates (Fig. 3a). The degree of

interconnectivity of a metabolic network can be characterized by the network diameter, defined as the

shortest biochemical pathway averaged over all pairs of substrates. For all non-biological networks

examined to date the average connectivity of a node is fixed, which implies that the diameter of a

network increases logarithmically with the addition of new nodes 2, 27, 28. For metabolic networks this

implies that a more complex bacterium with higher number of enzymes and substrates, such as E. coli,

would have a larger diameter than a simpler bacterium, such as M. genitalium. In contrast, we find that

the diameter of the metabolic network is the same for all 43 organisms, irrespective of the number of

substrates found in the given species (Fig. 3b). This is surprising and unprecedented, and is possible

only if with increasing organism complexity individual substrates are increasingly connected in order to

maintain a relatively constant metabolic network diameter (Fig. 3a inset). Indeed, we find that the

average number of reactions in which a certain substrate participates increases with the number of

substrates found within the given organism (Fig. 3c and d).
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An important consequence of the power-law connectivity distribution is that a few hubs dominate

the overall connectivity of the network (Fig. 1c), and upon the sequential removal of the most-

connected nodes the diameter of the network rises sharply, the network eventually disintegrating into

isolated clusters that are no longer functional. Yet, scale-free networks also demonstrate unexpected

robustness against random errors 5. To examine if metabolic networks display a similar error tolerance

we performed computer simulations on the metabolic network of the bacterium, E. coli. Upon removal

of the most connected substrates the diameter increases rapidly, illustrating the special role these

metabolites play in maintaining a constant metabolic network diameter (Fig. 3e). However, when

randomly chosen M substrates were removed, -mimicking the consequence of random mutations of

catalyzing enzymes-, the average distance between the remaining nodes was not affected, indicating a

striking insensitivity to random errors. Indeed, in-silico and in-vivo mutagenesis studies indicate a

remarkable fault tolerance upon removal of a substantial number of metabolic enzymes from the E. coli

metabolic network 29. Of note, data similar to that shown in Fig. 3e have been obtained for all

investigated organisms, without detectable correlations with their evolutionary position.

Since the large-scale architecture of the metabolic network rests on the most highly connected

substrates, we need to address whether the same substrates act as hubs in all organisms, or if there

are major organism-specific differences in the identity of the most connected substrates. When we rank

order all the substrates in a given organism based on the number of links they have (Table 1), we find

that the ranking of the most connected substrates is practically identical for all 43 organisms. Also, only

~4% of all substrates that are found in all 43 organisms are present in all species. These substrates

represent the most highly connected substrates found in any individual organism, indicating the generic

utilization of the same substrates by each species. In contrast, species-specific differences among

various organisms emerge for less connected substrates. To quantify this observation, we examined

the standard deviation (σ
r
) of the rank for substrates that are present in all 43 organisms. As shown in

Fig. 3f, we find that σ
r
 increases with the average rank order, 〈r〉, implying that the most connected
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substrates have a relatively fixed position in the rank order, but the ranking of less connected

substrates is increasingly species-specific. Thus, the large-scale structure of the metabolic network is

identical for all 43 species, being dominated by the same highly connected substrates, while less

connected substrates preferentially serve as educt or product of species-specific enzymatic activities.

The contemporary topology of a metabolic network reflects a long evolutionary process molded in

general for a robust response towards internal defects and environmental fluctuations and in particular

to the ecological niche the specific organism occupies. As a result, one expects that these networks are

far from being random, and our data demonstrate that the large-scale structural organization of

metabolic networks is indeed highly similar to that of robust and error-tolerant networks 2, 5. The

uniform network topology observed in all 43 organisms strongly suggests that, irrespective of their

individual building blocks or species-specific reaction pathways, the large-scale structure of metabolic

networks is identical in all living organisms.

A unique feature of metabolic networks, as opposed to that seen in non-biological scale-free

networks, is the apparent conservation of the network diameter in all living organisms. Within the

special characteristics of living systems this attribute may represent an additional survival and growth

advantage, since a larger diameter would attenuate the organism’s ability to efficiently respond to

external changes or internal errors. For example, should the concentration of a substrate suddenly

diminish due to mutation in its main catalyzing enzyme, offsetting the changes would involve the

activation of longer alternative biochemical pathways, and consequently the synthesis of more new

enzymes, than within a smaller metabolic network diameter.

But how generic these principles are for other cellular networks (e.g., information transfer, cell

cycle)? While the current mathematical tools do not allow unambiguous statistical analysis of the

topology of other networks due to their relatively small size, our preliminary analysis suggest that

connectivity distribution of non-metabolic pathways also follows a power-law distribution, indicating that

cellular networks as a whole are scale-free networks. Therefore, the evolutionary selection of a robust
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and error tolerant architecture may characterize all cellular networks, for which the scale-free topology

with a conserved network diameter appears to provide an optimal structural organization.

Methods

Database preparation: For our analyses of core cellular metabolisms we used the “Intermediate metabolism and

Bioenergetics” portions of the WIT database 18 (http://igweb.integratedgenomics.com/IGwit/), that predicts the

existence of a metabolic pathway in an organism primarily based on the annotated genome of the organism, i.e.,

on the presence of the open reading frame (ORF) of an enzyme that catalyzes a given metabolic reaction. As of

December 1999, this database provides description for 6 archaea, 32 bacteria and 5 eukaryota. The downloaded

data were manually rechecked, removing synonyms and substrates without defined chemical identity.

Construction of metabolic network matrices: Biochemical reactions described within a WIT database are

composed of substrates and enzymes connected by directed links. For each reaction, educts and products were

considered as nodes connected to the temporary educt-educt complexes and associated enzymes. Bi-directional

reactions were considered separately. For a given organism with N substrates, E enzymes and R intermediate

complexes the full stochiometric interactions were compiled into an (N+E+R) × (N+E+R) matrix, generated

separately for each of the 43 organisms.

Connectivity distribution  [P(k)]: Substrates generated by a biochemical reaction are products, and are

characterized by incoming links pointing to them. For each substrate we have determined kin, and prepared a

histogram for each organism, providing how many substrates have exactly kin =0,1,…. Dividing each point of the

histogram with the total number of substrates in the organism provided P(kin), or the probability that a substrate

has kin incoming links. Substrates that participate as educts in a reaction have outgoing links. We have performed

the analysis described above for kin, determining the number of outgoing links (kout) for each substrate. To reduce

noise logarithmic binning was applied.

Biochemical pathway lengths  [Π(l)]: For all pairs of substrates, the shortest biochemical pathway, Π(l) (i.e., the

smallest number of reactions by which one can reach substrate B from substrate A) were determined using a

burning algorithm. From Π(l) we determined the diameter, D = ∑∑ ΠΠ⋅
ll

lll )()( , which represents the

average path length between any two substrates.
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Substrate ranking  [ <r>o , σ(r) ]: Substrates present in all 43 organisms (i.e., a total of 51 substrates) were ranked

based on the number of links each had in each organisms, having considered incoming and outgoing links

separately (r =1 were assigned for the substrate with the largest number of connections, and r =2 for second most

connected one, etc.). This way for each substrate a well-defined r  value in each organism was defined. The

average rank <r>o for each substrate was determined by averaging r over the 43 organisms. We also determined

the standard deviation, σ(r) = <r2>o - <r>o

2 for all 51 substrates present in all organisms.

Analysis of the effect of database errors: Of the 43 organisms whose metabolic network we have analyzed the

genome of 25 has been completely sequenced (5 Archae, 18 Bacteria, 2 Eukaryotes), while the remaining 18 are

only partially sequenced. Therefore two major sources of possible errors in the database could affect our analysis:

(a) the erroneous annotation of enzymes and consequently, biochemical reactions; for the organisms with

completely sequenced genomes this is the likely source of error. (b) reactions and pathways missing from the

database; for organisms with incompletely sequenced genomes both (a) and (b) are of potential source of error.

We investigated the effect of database errors on the validity of our findings, the results being presented in the

Supplementary Material 26, indicating that the results offered in this paper are robust to these errors.
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FIGURE LEGENDS

Figure 1

(a) The classical random network model of Erdös and Rényi assumes that each pair of nodes are connected
randomly, with probability p. Since links are assigned randomly, nodes can have different number of links
(connectivity). (b) The network connectivity can be characterized by the histogram of the number of nodes with k
links, which, after normalization, gives the probability, P(k), that a node has k links. For a random network P(k) is
strongly peaked at k = 〈k〉 and decays exponentially for large k (i.e. P(k) ~ e-k  for k » 〈k〉 and k « 〈k〉), implying that
the majority of nodes have the same connectivity k ≈ 〈k〉. (c) A scale-free network has a drastically different
topology: most nodes have only a few links, but a few nodes, called hubs (red), have a very large number of links,
effectively connecting the rest of the nodes together into a fully connected network. (d) The connectivity
distribution, P(k), for a scale-free network has no well-defined peak, indicating the absence of a characteristic
scale. For large k, P(k) decays as a power-law, P(k) ~ k-γ , thus P(k) appears as a straight line with slope -γ on a
log-log plot. (e) The substrates and the reactions in a metabolic network can be uniquely described using a graph
theoretic representation. Each substrate represents a node of the graph, denoted by A, B, C, …. These nodes are
linked to one another through temporary educt-educt complexes (black boxes, M1, M2, …), from which the
products emerge as new nodes (substrates). The enzymes that provide the catalytic scaffolds for the reactions
are also shown (denoted by E1, E2, …). Since under in vivo conditions some reactions are reversible, while others
are irreversible, in the graph we have both directed (simple arrow) or undirected (double arrow) links. The
complexity of the metabolic network comes from the fact that some substrates can participate in multiple
reactions, and can act both as educt or product of different reactions.
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Figure 2

Connectivity distribution P(k) for the substrates in (a) A. fulgidus (Archae) (b) E. coli (Bacterium) (c) C. elegans
(Eukaryote), shown on a log-log plot, counting separately the incoming (IN) and outgoing links (OUT) for each
substrate, kin (kout) corresponding to the number of reactions in which a substrate participates as an product
(educt) (see Fig. 1e). Practically indistinguishable plots have been obtained for all 43 organisms investigated. The
characteristics of the three organisms shown in a-c and the exponents γin and γout for all organisms are given in
Table 1. (d) The connectivity distribution averaged over all 43 organisms. The exponent γ was determined from
the slope of the plots, calculated using a least square fit method.
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Figure 3

(a) The histogram of the biochemical pathway lengths, ", in the bacterium, E. coli. For example in Fig. 1e the
biochemical pathway distance between the substrates B and D is "=1, since these can be linked through a single
reaction (B → 2E D), but between B and F we have "=2, counted, for example, along the B → 2E D → 1E F
pathway. The figure shows the histogram of the shortest biochemical pathway lengths for all pairs of substrates in
E. coli. The average path length gives the diameter of the network. The strong peak of Π(") indicates that in E. coli
most substrates are connected by a path of length "=3, i.e. the average diameter of the network is close to three
(the precise value is D=3.2). Inset: Schematic illustration of the changes in the network diameter during growth. In
a simple network containing three nodes (A, B and C) each having 2 links (solid lines), the distance between any
two nodes is equal to 1, thus the diameter of the network is 1. When a new node (D) with two links (BD and CD,
dashed lines) is added to the system, the diameter increases to D=("AB+"AC+"BC +"BD +"DC +"AD)/6 = 7/6 since "AD=2
and all other distances are "=1. Adding an extra link (AD, dotted line) will decrease the diameter, bringing it back
to one, while the average connectivity increases from 2 to 3, demonstrating that an unchanged diameter can be
maintained through increasing the average connectivity. (b) The diameter for all 43 investigated organisms,
indicating that the diameter is constant within the error bars. The error bars in (b) correspond to the standard
deviation σ  ~ 〈"2〉 - 〈"〉2 as determined from Π(") (shown in (a) for E. coli). The horizontal axis denotes the number
of nodes in each organism. Archaea are shown in magenta, bacteria in green, and eukaryotes in blue, a color
code used in Table 1 as well. (c) The average number of incoming links per node for each bacterium studied in
the database, calculated by dividing the total number of incoming links (Lin) with the number of substrates (N) in a
given organism. (d) The same as in (c) but for outgoing links. (e) The effect of substrate removal on the diameter
of the E. coli bacteria. In the upper curve (∆) we select and remove the nodes in an inverse order of connectivity,
starting with the most connected substrate first (largest hub), and continuing in decreasing order of the number of
links, indicating that the diameter is sensitive to the presence/absence of the most connected nodes. In the
bottom curve (�) nodes are selected and removed randomly. The unchanged diameter indicates the high degree
of error tolerance of the metabolic network. Note that M=60 corresponds to 8% of the total number of substrates
in E. coli. (f) Standard deviation of the substrate ranking (σr) as a function of the average ranking, 〈r〉o for
substrates present in all 43 investigated organisms. For each organism we ranked all substrates based on the
number of links they had, assigning r=1 for the most connected substrate, r=2 for next less connected one, and so
on. We then determined 〈r〉o for a given substrate, where 〈 〉o denotes averaging the ranking of a given substrate
over all 43 organisms, and the standard deviation, σr = 〈r2〉o - 〈r〉o

2. A substrate with σr = 0 and average rank 〈r〉o has
rank r = 〈r〉o in each of the 43 organisms, while an increasing σr signals increased variability in the ranking of the
substrate. Note that only 51 substrates are present in all organisms, a mere 4% of the total, indicating high degree
of differentiation between different species.                                                                       .
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Table 1.
No. Name N L(IN) L(OUT) R E γin γout D Hub(IN) Hub(OUT)

1 A. pernix 204 588 575 178 135 2.2 2.2 3.2 bacdelgfij adbcegipfh
2 A. fulgidus 496 1527 1484 486 299 2.2 2.2 3.5 abcdghefjk adbijchemf

3 M. thermoautotro
phicum 430 1374 1331 428 280 2.2 2.2 3.4 abcdgefkhi adbicejfkh

4 M. jannaschii 424 1317 1272 415 264 2.2 2.3 3.5 abcdgekfnh adbciejkhf
5 P. furiosus 316 901 867 283 191 2.0 2.3 3.4 abcdgeknfh dabceipjhf
6 P. horikoshii 323 914 882 288 196 2.0 2.2 3.4 abdcgefknl dabciepjhq
7 A. aeolicus 419 1278 1249 401 285 2.1 2.2 3.3 bcadgefhki adbciejgfh
8 C. pneumoniae 194 401 391 134 84 2.2 2.3 3.4 bdcagfleri dabciergfp
9 C. trachomatis 215 479 462 158 94 2.2 2.4 3.5 bdacgfelrm dbaciegrfp
10 Synechocystis sp. 546 1782 1746 570 370 2.0 2.2 3.3 abcdegfhjk adbicjehfg
11 P. gingivalis 424 1192 1156 374 254 2.2 2.2 3.3 abdcgefnkh adbceipjhg
12 M. bovis 429 1247 1221 391 282 2.2 2.2 3.2 abdcgelfkm adbceifhjq
13 M. leprae 422 1271 1244 402 282 2.2 2.2 3.2 abcdgefkml adbceifjhq
14 M. tuberculosis 587 1862 1823 589 358 2.0 2.2 3.3 adbcghemjk adbjhmceit
15 B. subtilis 785 2794 2741 916 516 2.2 2.1 3.3 abdcjhmegf adhbjcimef
16 E. faecalis 386 1244 1218 382 281 2.1 2.2 3.1 bdacgelfik adbciefghj
17 C. acetobutylicum 494 1624 1578 511 344 2.1 2.2 3.3 abcdgefhlk adbceijhfo
18 M. genitalium 209 535 525 196 85 2.4 2.2 3.5 bdcgzxuyos adbcguvwos
19 M. pneumoniae 178 470 466 154 88 2.3 2.2 3.2 bcdgxoyasl dabcgowvsr
20 S. pneumoniae 416 1331 1298 412 288 2.1 2.2 3.2 abdcgelfno adbceifghj
21 S. pyogenes 403 1300 1277 404 280 2.1 2.2 3.1 abdcegfoln adbceifohg
22 C. tepidum 389 1097 1062 333 231 2.1 2.2 3.3 badcgenfki dabceipgfq
23 R. capsulatus 670 2174 2122 711 427 2.1 2.2 3.4 abcdhgefjk adbjhicmet
24 R. prowazekii 214 510 504 155 100 2.3 2.3 3.4 bdacfegilm dabicfemgt
25 N. gonorrhoeae 406 1298 1270 413 285 2.1 2.2 3.2 abdcgefkjh adbiechfjg
26 N. meningitidis 381 1212 1181 380 271 2.2 2.2 3.2 abdcegfkli adbecifhjg
27 C. jejuni 380 1142 1115 359 254 2.1 2.3 3.2 abdcegfkih adbeicfgjh
28 H. pylori 375 1181 1144 375 246 2.0 2.3 3.3 abcdgefnhk dabciejfhp
29 E. coli 778 2904 2859 968 570 2.2 2.1 3.2 abcdhjemlf adhjbciefm
30 S. typhi 819 3008 2951 1007 577 2.2 2.2 3.2 abcdhjegfm adhjbciefm
31 Y. pestis 568 1754 1715 580 386 2.1 2.2 3.3 abdcgeklfh adbceihjfl

32 A. actinomycetem
comitans

395 1202 1166 380 271 2.1 2.2 3.2 bacdgefikl adbciefhgj

33 H. influenzae 526 1773 1746 597 361 2.1 2.3 3.2 abcdegfjhm adbchiefju
34 P. aeruginosa 734 2453 2398 799 490 2.1 2.2 3.3 abdchjkgef adjhbimcef
35 T. pallidum 207 562 555 175 124 2.2 2.3 3.1 bdcgaelnfh dabcegiplf
36 B. burgdorferi 187 442 438 140 106 2.3 2.4 3.0 bdgcaleifn dabcgifeαl
37 T. maritima 338 1004 976 302 223 2.1 2.2 3.2 badcegfikn dabceifgqh
38 D. radiodurans 815 2870 2811 965 557 2.2 2.1 3.3 acbdhjgekm adhbjcimef
39 E. nidulans 383 1095 1081 339 254 2.1 2.2 3.3 abdcegjhfl adbcjheifq
40 S. cerevisiae 561 1934 1889 596 402 2.0 2.2 3.3 abdcehjgkm adbhcjeifm
41 C. elegans 462 1446 1418 450 295 2.1 2.2 3.3 abdcjhelgk adbhcjiefm
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42 O. sativa 292 763 751 238 178 2.1 2.3 3.5 badcegljkn adbcehjifn
43 A. thaliana 302 804 789 250 185 2.1 2.3 3.5 badcegjhlk adbcehjign

Summary of the characteristics of the 43 investigated organisms. For each organism we show the number of
substrate (N), number of links (L), number of individual reactions or temporary substrate-enzyme complexes (R),
number of enzymes (E), the exponent γin and γout and the diameter of the metabolic network (D). In the last two
columns we list the ten substrates with the largest number of incoming (IN) and outgoing (OUT) links. The letters
correspond to: a=H2O, b=ADP, c=orthophosphate, d=ATP, e=L-glutamate, f=NADP+, g=pyrophosphate, h=NAD+,
i=NADPH, j=NADH, k=CO2, l=NH4

+, m=CoA, n=AMP, o=pyruvate, p=L-glutamine, q=2-oxoglutarate, r='alpha'-D-
glucose 1-phosphate, s=phospho`enol`pyruvate, t=acetyl-CoA, u=H+, v=uridine, w=cytidine, x=UMP, y=CMP,
z=glycerol, α=D-fructose 6-phosphate. The color code of the fields denotes the different domains of life such a
magenta = Archae green = Bacterium sky blue =Eukaryote.


